Normal velocity freeze-out of the Richtmyer-Meshkov instability when a shock is reflected.

نویسندگان

  • J G Wouchuk
  • K Nishihara
چکیده

It is known that for some values of the initial parameters that define the Richtmyer-Meshkov instability, the normal velocity at the contact surface vanishes asymptotically in time. This phenomenon, called freeze-out, is studied here with an exact analytic model. The instability freeze-out, already considered by previous authors [K.O. Mikaelian, Phys. Fluids 6, 356 (1994), Y. Yang, Q. Zhang, and D.H. Sharp, Phys. Fluids 6, 1856 (1994), and A.L. Velikovich, Phys. Fluids 8, 1666 (1996)], is the result of a subtle interaction between the unstable surface and the corrugated shock fronts. In particular, it is seen that the transmitted shock at the contact surface plays a key role in determining the asymptotic behavior of the normal velocity at the contact surface. By properly tuning the fluids compressibilities, the density jump, and the incident shock Mach number, the value of the initial circulation deposited by the reflected and transmitted shocks at the material interface can be adjusted in such a way that the normal growth at the contact surface will vanish for large times. The conditions for this to happen are calculated exactly, by expressing the initial density ratio as a function of the other parameters of the problem: fluids compressibilities and incident shock Mach number. This is done by means of a linear theory model developed in a previous work [J.G. Wouchuk, Phys. Rev. E. 63, 056303 (2001)]. A general and qualitative criterion to decide the conditions for freezing-out is derived, and the evolution of different cases (freeze-out and non-freeze-out) are studied with some detail. A comparison with previous works is also presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected.

An analytic model is presented to calculate the growth rate of the linear Richtmyer-Meshkov instability in the shock-reflected case. The model allows us to calculate the asymptotic contact surface perturbation velocity for any value of the incident shock intensity, arbitrary fluids compressibilities, and for any density ratio at the interface. The growth rate comes out as the solution of a syst...

متن کامل

A study of planar Richtmyer-Meshkov instability in fluids with Mie-Grüneisen equations of state

We present a numerical comparison study of planar Richtmyer-Meshkov instability with the intention of exposing the role of the equation of state. Results for Richtmyer-Meshkov instability in fluids with Mie-Grüneisen equations of state derived from a linear shock-particle speed Hugoniot relationship (Jeanloz, J. Geophys. Res. 94, 5873, 1989; McQueen et al., High Velocity Impact Phenomena (1970)...

متن کامل

Quantitative Theory of Richtmyer-meshkov Instability in Three Dimensions

A material interface between two fluids of different density accelerated by a shock wave is unstable. This instability is known as Richtmyer-Meshkov (RM) instability. Previous theoretical and numerical studies primarily focused on fluids in two dimensions. In this paper, we present the studies of RichtmyerMeshkov instability in three dimensions in rectangular coordinates. There are three main r...

متن کامل

Theory of the Ablative Richtmyer–Meshkov Instability

30 LLE Review, Volume 77 In inertial confinement fusion (ICF) implosions, a laser irradiation induces a shock wave propagating through the target. During the shock transit time, the ablation front travels at a constant velocity, and any surface perturbations could grow due to the Richtmyer-Meshkov (RM)–like instability.1–5 Later, when a rarefaction wave reaches the ablation surface, the acceler...

متن کامل

An Analytical Nonlinear Theory of Richtmyer- Meshkov Instability

Richtmyer-Meshkov instability is a fingering instability which occurs at a material interface accelerated by a shock wave. We present an analytic, explicit prediction for the growth rate of the unstable interface. The theoretical prediction agrees, for the first time, with the experimental data on air-SF6, and is in remarkable agreement with the results of recent full non-linear numerical simul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 70 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004